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DATA-EFFICIENT FRAMEWORK FOR REAL-WORLD
MULTIPLE SOUND SOURCE 2D LOCALIZATION
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1) Localize multiple sound

sources using a deep

learning framework [1].

2) Develop a data efficient

framework to get good

performance with limited

labeling efforts in a real-

world environment.
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✓ Real data is very 

relevant for the 

downstream task

✗ Collecting 

annotated data is 

expensive

✓ Synthetic data is 

abundant and easy 

to label

✗ Performance 

drops when training 

on synthetic and 

testing on real data

1) Close the domain “gap” using unlabeled real-world data 

✗ Specific to the 
microphone array layout

2) Enable localization without capturing data of all possible layouts
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Solution: Reduce the divergence

between domains in a feature

space by leveraging unlabeled

real-world data.

unlabeled real + labeled synthetic 
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Discriminators can 

be combined at 

both intermediate
and output levels.

L(1, 1)

L(x, y) : “localization cues from x in y referential”
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Heatmap of 
sound sources 
in mic-array 1 

referential

Solution: Leverage pose between arrays explicitly in the model to

project features [3] from different arrays into the same referential.
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Transformation 
Layer

(𝑡𝑥, 𝑡𝑦, 𝜃)

Method
Explicit 

Transformation

Use 

Relative 

Pose

Train on single

configuration

Train on multiple

configurations

PRE ↑ REC ↑ F1 ↑ RMSE↓ PRE ↑ REC ↑ F1 ↑ RMSE↓

Plain Encoder-

Decoder
✘ ✘ - - - - 0.42 0.31 0.35 0.17

Fully 

Connected 
Layer

✘ ✔ 0.11 0.07 0.09 0.18 0.69 0.55 0.49 0.17

Explicit 

Transformation 

Layer

✔ ✔ 0.64 0.61 0.62 0.14 0.87 0.74 0.80 0.11

Train : single microphone array layout OR multiple microphone array layouts.

Test : multiple microphone array layouts, including unseen array positions.

sound source 1

sound source 2

Towards practical deep learning based sound source localization

systems, we reduce the burden of real-world data collection by:

1) Closing the synthetic-to-real domain “gap” by unsupervised

domain adaptation, which doesn’t require real labels,

2) Using explicit transformations inside the deep neural network to

achieve layout invariance.
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Develop data efficient framework to get good performance from small dataset in real-world.
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